If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+72x+598=0
a = -5; b = 72; c = +598;
Δ = b2-4ac
Δ = 722-4·(-5)·598
Δ = 17144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17144}=\sqrt{4*4286}=\sqrt{4}*\sqrt{4286}=2\sqrt{4286}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-2\sqrt{4286}}{2*-5}=\frac{-72-2\sqrt{4286}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+2\sqrt{4286}}{2*-5}=\frac{-72+2\sqrt{4286}}{-10} $
| 9(b-4)-7b=5(3b+2) | | ⅔+3m/5=31/15 | | 3+x−2=103+x−2=10. | | -5+8x=2+4×+41 | | x^2-8/9x+16/81=0 | | 3500=6^(3x) | | 3.x/3+6=-2×3 | | 3p+8-7p=17 | | 3√x=2 | | 1/6d+2/3=1/4d-0.5 | | 7-x=x+1+2x | | 0.25m=3+0.15m | | 11x=2x+17 | | 4x/3-1-x/2=-11 | | 114=-8(2x) | | -x-11=-15 | | (6x-15)+(x+8)=128 | | 3/8(y-40)=16 | | 6n+5(1-6n)=2(1+13n)+13 | | -5.9-12.7=-6.6a-2.9 | | -x-11=15 | | -11(5a+6)=2(3a+8) | | -2=(10x-3)8 | | 9/25=p+5/125 | | 5(x+3)=175-5x | | -5x+x/4=1 | | -8x+10-4x=34 | | 30-3x=9x-5 | | 110(4+x)=770 | | -3a+2=-a+2 | | 3+4n=2n+19 | | -4-9x=68 |